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As in the original space, in feature space, the covariance matrix   can be 

diagonalized  and we can find the eigenvectors and eigenvalues that satisfy:

   
i i

iC v v =

=> Formulate everything as a dot product and use kernel trick!

But finding the eigenvectors  of  may not possible,

as we do not have the feature space.

v C

kPCA derivation

Primal eigenvalue problem
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1

1

The solutions to the dual eigenvalue problem are given by all the 

eigenvectors ,...,  with non-zero eigenvalues ,..., .M

M   

kPCA Solution to Dual Problem

Eigenvalue problem of the form:

,      :  Gram Matrixi i

iK M K =
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( ) ( )
1

Projection of query point x onto eigenvector : 

1
, ,

i

M
i i j

j

ji

v

v x k x x
M

 
 =

= 

We cannot see the projections in feature space! 

We can only compute the projections of each point onto each eigenvector.

( )

Isolines group points with 

equal projection:

All points , . : , .ix s t v x cst =

Constructing the kPCA projections
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( ) ( )
1

Projection of query point x onto eigenvector : 

1
, ,

i

M
i i j

j

ji

v

v x k x x
M

 
 =

= 

kPCA Exercise 1.1

( )

2

2

'

Using the RBF kernel: , '

x x

k x x e 

−
−

=

Consider a 2 dimensional data space,  with two datapoints:

a) How many dual eigenvectors do you have and what is their dimension?

b) Compute the eigenvectors and draw the isolines for the projections 

on 

− −

each eigenvector.

HINT: kPCA requires data to be centered in feature space

This leads to the following transformation (see suppl. exercises)
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kPCA Exercise 1.1

1: Compute Dual eigenvectors

( )1 2

        -
  

     -     

,1

2 2

a b a a
After centering K

b a a a

k x x
a b

   
= =   
   

= − = −

1

2

1st eigenvector : 

2nd eigenvector : 

v

v

( ) ( )
1

1
2. Projection of query point x onto eigenvector : , ,

M
i i i j

j

ji

v v x k x x
M

 
 =

= 



777

MACHINE LEARNING II

kPCA Exercise 1.1

1

2

1st eigenvector : 

2nd eigenvector : 

v

v

Projection on first eigenvector Projection on second eigenvector

3: Draw the isolines
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( ) ( )
1

Projection of query point x onto eigenvector : 

1
, ,

i

M
i i j

j

ji

v

v x k x x
M

 
 =

= 

kPCA Exercise 1.2

( )

homogeneous polynomial kernel with p=1 and p=2: 

, ' , '
p

k x x x x=

Consider a 2 dimensional data space,  with two datapoints:

Compute the eigenvectors and draw the isolines for the projections 

on each eigenvector.

− −
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kPCA Exercise 1.2: solution

( ) ( )

( )( ) ( )( )

1 2 1 1 2 2 1 2 1 1 2 2

2 2
1 2 1 2

1 1

After centering  

1 1 1 1
( , ) ( , ) ( , ) ,  ( , ) ( , ) ( , )

2 4 2 4

1 1

      
,

1 1
cos ,  s

        
      

co
2 4 2 4

 

p p
p p

i i

i i

a k x x k x x k x x b k x x k x x k x x

a x x x b x x

a b
K a b

b a

x 
= =

 
= = −

−= − + + = +

=



− +



−



=



 

1 1 1 2

2 1 2 2

( , )    ( , )
  (before centering)    

( , )    ( , ) 

k x x k x x
K

k x x k x x

 
=  
 

1 1
Dual eigenvectors are: [ 1 1]

2

T = − 2 1
[1  1]

2

T =

( ) ( ) ( )1 2 11 1
Projections on eigenvectors: , , ,

2 2
v x k x x k x x = − ( ) ( ) ( )2 1 21 1

, , ,
2 2

v x k x x k x x = +

1,  the isolines are lines perpendicular to the combination of vector points. 

2,4,6,etc generate ellipses and variants on these (see kernel lecture)

3,5,7,etc generate hyperbolas and variants on t

p

p

p

=

=

= hese (see kernel lecture)
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kPCA Exercise 1.2: solution

For the particular case where the two vector points are colinear or anticolinear,

or when they are orthogonal, the solution is a set of lines orthogonal to the two vector points.

For orthogonal vectors, 1 2
0   1

   , and the dual eigenvectors are [0 1] , [1 0]
1   0

T TK  
 

= = = 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 2 1, ,   and    , ,
p p

T T

v x k x x x x v x k x x x x = = = =
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( ) ( )
1

Projection of query point x onto eigenvector : 

1
, ,

i

M
i i j

j

ji

v

v x k x x
M

 
 =

= 

kPCA Exercise 1.3

Consider a 2 dimensional data space,  with datapoints:

Compute the eigenvectors and draw the isolines for the projections 

on each eigenvector, when using:

a) RBF kernel

b) Homogeneous polyno

3 equidistant − −

mial kernel

What happens if the points are not equidistant?
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kPCA Exercise 1.3: solution

Points equidistant:

Dual eigenvectors

( ) ( ) ( )1 2 1 3 2 3, , ,k bx x k x x k x x= ==

1       b      b 2 - 2     -1      -1
1

b       1     b -1     2 - 2      -1
3

b       b     1 -1      -1     2 - 2

b b b

K K b b b

b b b

   
   

=  =
   
      
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kPCA Exercise 1.3: solution

Projections on dual eigenvectors with RBF
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kPCA Exercise 1.3: solution

Projections on dual eigenvectors with polynomial of order 2
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kPCA Exercise 1.3: solution

Projections on dual eigenvectors with polynomial of order 2

Observe how the ellipse and hyperbolas align with the points’ spatial distribution.
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kPCA Exercise 1.3: solution

Dual eigenvectors remain identical even when the kernel is of higher order

P=3 P=4

1st 1st2nd 2nd

3rd 3rd



171717

MACHINE LEARNING II

kPCA Exercise 1.3: solution

Adding more datapoints 

affects only the direction of 

the ellipse and hyperbolas 

but not the shape as the 

projections are solely a 

combination of the addition 

of several polynomial or RBF 

kernels.
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