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kPCA derivation

As In the original space, in feature space, the covariance matrix can be
diagonalized and we can find the eigenvectors and eigenvalues that satisfy:

CVv =4V

Primal eigenvalue problem

But finding the eigenvectors v of C, may not possible,
as we do not have the feature space.

=> Formulate everything as a dot product and use kernel trick!
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kPCA Solution to Dual Problem

Eigenvalue problem of the form:

Ka' =MAa', K: Gram Matrix

The solutions to the dual eigenvalue problem are given by all the
eigenvectors o',...,a"™ with non-zero eigenvalues 4, ..., 4,, .



Constructing the KPCA projections

We cannot see the projections in feature space!
We can only compute the projections of each point onto each eigenvector.

Projection of query point x onto eigenvector v':

<v‘,¢(x)>=ﬂﬁ+\ﬂéa}k(xj,x)

Eigenvector=1; Eigenvalue=0.2339; Sigma=0.90
2

Isolines group points with
equal projection:
All points X, s.t; <v‘,¢(x)> — Cst.
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kPCA Exercise 1.1

Projection of query point x onto eigenvector v':

(V,9() =~ Dk (x1.x) [

Using the RBF kernel: k(x,x')=e <

Consider a 2—dimensional data —space, with two datapoints:
a) How many dual eigenvectors do you have and what is their dimension?

b) Compute the eigenvectors and draw the isolines for the projections
on each eigenvector.

HINT: kPCA requires data to be centered in feature space
This leads to the following transformation (see suppl. exercises)

1 M 1 M | M
K; =K — ﬂZKﬁf — ﬂz Ky + e Z K
k=1 k=1 ke =1
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kPCA Exercise 1.1

k(2! 22) ] After centering K =

1 k(xx

a=-b=

M M M

- 1 . 1 . 1 .

K;:j = K;;J—r' i E K. — Vi E K;;J—,‘ + 2 E K
k=1 k=1

kl=1

1

1: Compute Dual eigenvectors 1,117 and o = —L—[1, 1]

il

2. Projection of query point x onto eigenvector v': <v‘ (X)) =

N ‘
Z =
Q.
=
<
X

j=1
Ist eigenvector V. (vl é(x)) = afk(zt, 2) + a?k(2?, ) = L;\.’(ifl. z) + Lk(rz.;r}
: : : 1 1
2nd eigenvector v (v%, o (x)) = ask(xt, x) + adk(z?, 2) = ﬁflr{rl, T) — \Tﬁk(.{'z. r)
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kPCA Exercise 1.1

3: Draw the isolines

Projection on first eigenvector Projection on second eigenvector
: 1 1
1st eigenvector v*: vl d(x)) = atk(zl. o) + k(22 1) = — k(2! 2) + k(2. x
g (v", p()) 1k ( ) 1k ( ) 75 (v, x) NG (7%, )
1 1
2nd eigenvector v2: (02, d(x)) = adk(zt. 2) + adk(x?. 2) = —k(zt. 2) — E(x?, x
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kPCA Exercise 1.2

Projection of query point x onto eigenvector v':

<v‘,¢(x)> :iiMéa}k(x",x)

homogeneous polynomial kernel with p=1 and p=2:
k(% x")=(x,x")"

Consider a 2—dimensional data —space, with two datapoints:
Compute the eigenvectors and draw the isolines for the projections
on each eigenvector.
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kKPCA Exercise 1.2: solution

k(x', x") k(x',x?)
k(x*,x")  k(x*, x?)

} (before centering) o M | M M

. |la b
AftercenteringK:{b a] a=-b

a= —%k(xl, x2) +%(k(xl, x")+k(x?,x%)), b =%k(x1, x2) —%(k(xl, X') +k(x*,x%))

1 L&y 1 L&y
a==3(pelbeleos(@) +3 I o= (<l leos o)) -3 S|

1 1

V2 V2

Projections on eigenvectors: <v1,¢(x)>=%k(x ,x)—%k(xl,x) <V2,¢(X)> :%k(x ,x)+%k(x ,X)

Dual eigenvectors are: a* = ——=[-11]" o’ =——=[1 1

p =1, the isolines are lines perpendicular to the combination of vector points.
p =2,4,6,etc generate ellipses and variants on these (see kernel lecture)
p =3,5,7,etc generate hyperbolas and variants on these (see kernel lecture)
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kKPCA Exercise 1.2: solution

R Ty

For the particular case where the two vector points are colinear or anticolinear,
or when they are orthogonal, the solution is a set of lines orthogonal to the two vector points.

01
For orthogonal vectors, K = L O} , and the dual eigenvectors are o' =[0 1]',a* =[1 0]

<v1,¢(x)>=k(xl,x)z((xl)T x)p and <v2,¢(x)>=k(x2,x):((x1)T x)

p
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kPCA Exercise 1.3

Projection of query point x onto eigenvector v':

M
(V', (X)) = &LM;a}k(x‘ X)
Consider a 2—dimensional data —space, with 3 equidistant datapoints:
Compute the eigenvectors and draw the isolines for the projections

on each eigenvector, when using:

a) RBF kernel

b) Homogeneous polynomial kernel

What happens if the points are not equidistant?



KPCA Exercise 1.3: solution

(x, : :_'.1j T
K = k(;r rl) 1 k(z?, x°)
| k(2 1) k(z3, 1

Points equidistant; k(Xl, X2) = k(Xl, X3) = k(xz, x3) =b

1 b b (2-2b b-1 b-1
K=lb 1 b :K:% b-1 2-2b b-1
b b 1 b-1 b-1 2-2b
Dual eigenvectors ol = %[1 117
o?=—2501 1"

1 —1/2 —1/2)]F

Q

]

|
S5 S
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kPCA Exercise 1.3: solution

Projections on dual eigenvectors with RBF
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kPCA Exercise 1.3: solution

Projections on dual eigenvectors with polynomial of order 2




MACHINE LEARNING I =

kPCA Exercise 1.3: solution

1

al = %[1 11T a? = \%@[01 — 17 a-3:\/g[1 —1/2 —1/2)]F

Observe how the ellipse and hyperbolas align with the points’ spatial distribution.
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kPCA Exercise 1.3: solution

Dual eigenvectors remain identical even when the kernel is of higher order
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kPCA Exercise 1.3: solution

Adding more datapoints
affects only the direction of
the ellipse and hyperbolas
but not the shape as the
projections are solely a
combination of the addition
of several polynomial or RBF
kernels.
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