

MACHINE LEARNING II

Kernel PCA

kPCA derivation

As in the original space, in feature space, the covariance matrix C can be diagonalized and we can find the eigenvectors and eigenvalues that satisfy:

$$C_\phi v^i = \lambda_i v^i$$

Primal eigenvalue problem

But finding the eigenvectors v of C_ϕ may not be possible, as we do not have the feature space.

=> Formulate everything as a dot product and use kernel trick!

kPCA Solution to Dual Problem

Eigenvalue problem of the form:

$$K\alpha^i = M\lambda_i\alpha^i, \quad K : \text{Gram Matrix}$$

The solutions to the dual eigenvalue problem are given by all the eigenvectors $\alpha^1, \dots, \alpha^M$ with non-zero eigenvalues $\lambda_1, \dots, \lambda_M$.

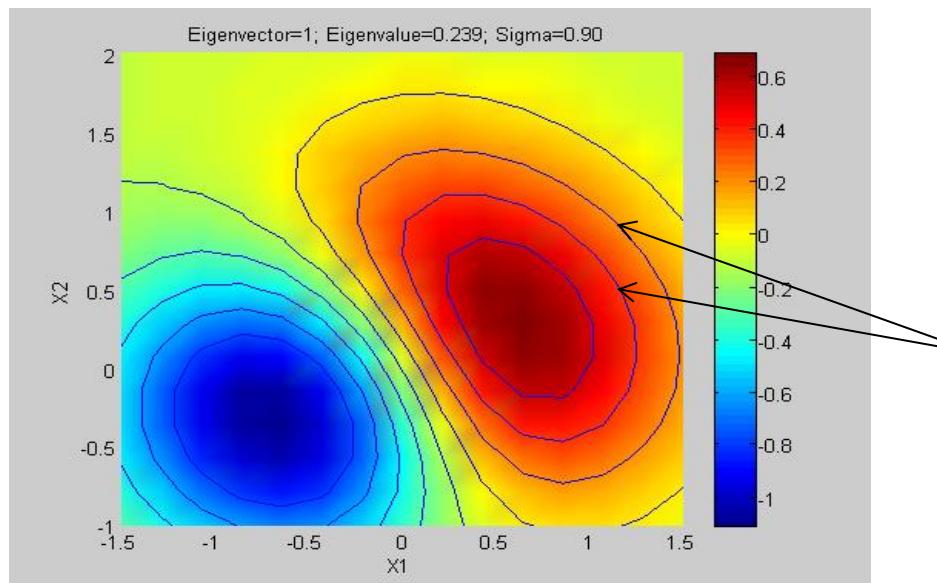
Constructing the kPCA projections

We cannot see the projections in feature space!

We can only compute the projections of each point onto each eigenvector.

Projection of query point x onto eigenvector v^i :

$$\langle v^i, \phi(x) \rangle = \frac{1}{\lambda_i M} \sum_{j=1}^M \alpha_j^i k(x^j, x)$$



Isolines group points with equal projection:
All points x , s.t: $\langle v^i, \phi(x) \rangle = cst.$

kPCA Exercise 1.1

Projection of query point x onto eigenvector v^i :

$$\langle v^i, \phi(x) \rangle = \frac{1}{\lambda_i M} \sum_{j=1}^M \alpha_j^i k(x^j, x)$$

Using the RBF kernel: $k(x, x') = e^{-\frac{\|x-x'\|^2}{\sigma^2}}$

Consider a 2 – dimensional data – space, with two datapoints:

- How many dual eigenvectors do you have and what is their dimension?
- Compute the eigenvectors and draw the isolines for the projections on each eigenvector.

HINT: kPCA requires data to be centered in feature space

This leads to the following transformation (see suppl. exercises)

$$\tilde{\mathbf{K}}_{ij} = \mathbf{K}_{ij} - \frac{1}{M} \sum_{k=1}^M \mathbf{K}_{ik} - \frac{1}{M} \sum_{k=1}^M \mathbf{K}_{kj} + \frac{1}{M^2} \sum_{k,l=1}^M \mathbf{K}_{kl}$$

kPCA Exercise 1.1

$$K = \begin{bmatrix} 1 & k(x^1, x^2) \\ k(x^2, x^1) & 1 \end{bmatrix}$$

After centering $\tilde{K} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} = \begin{bmatrix} a & -a \\ -a & a \end{bmatrix}$

$$a = -b = \frac{1}{2} - \frac{k(x^1, x^2)}{2}$$

$$\tilde{K}_{ij} = K_{ij} - \frac{1}{M} \sum_{k=1}^M K_{ik} - \frac{1}{M} \sum_{k=1}^M K_{kj} + \frac{1}{M^2} \sum_{k,l=1}^M K_{kl}$$

1: Compute Dual eigenvectors

$$\alpha^1 = \frac{1}{\sqrt{2}}[1, 1]^T \text{ and } \alpha^2 = \frac{1}{\sqrt{2}}[1, -1]^T$$

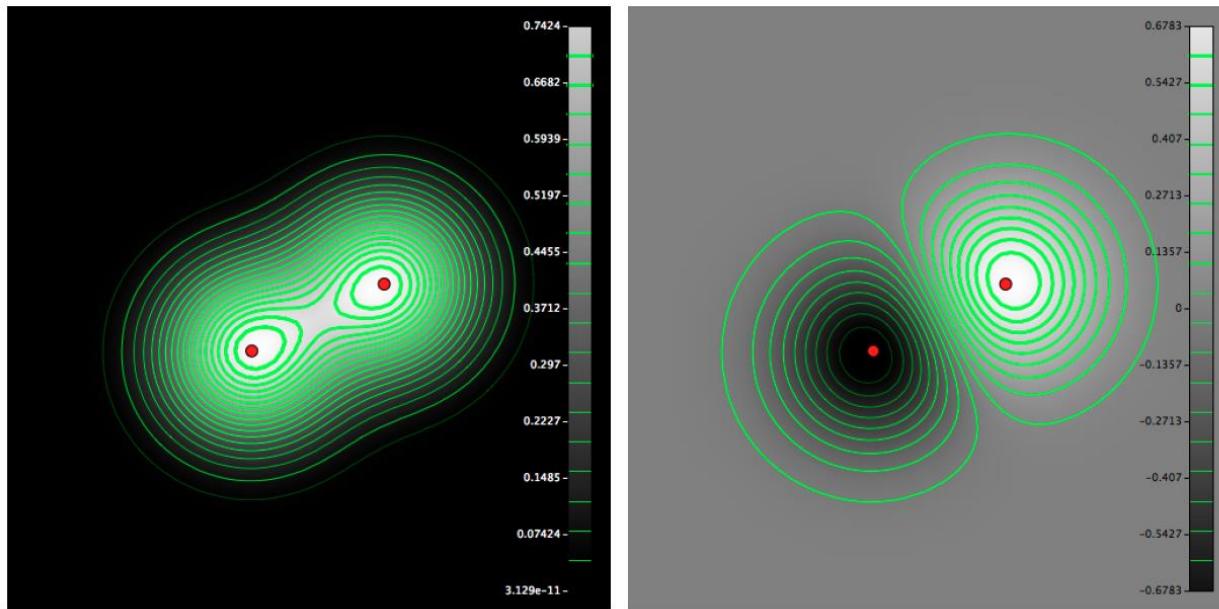
2. Projection of query point x onto eigenvector v^i : $\langle v^i, \phi(x) \rangle = \frac{1}{\lambda_i M} \sum_{j=1}^M \alpha_j^i k(x^j, x)$

1st eigenvector v^1 : $\langle v^1, \phi(x) \rangle = \alpha_1^1 k(x^1, x) + \alpha_1^2 k(x^2, x) = \frac{1}{\sqrt{2}}k(x^1, x) + \frac{1}{\sqrt{2}}k(x^2, x)$

2nd eigenvector v^2 : $\langle v^2, \phi(x) \rangle = \alpha_2^1 k(x^1, x) + \alpha_2^2 k(x^2, x) = \frac{1}{\sqrt{2}}k(x^1, x) - \frac{1}{\sqrt{2}}k(x^2, x)$

kPCA Exercise 1.1

3: Draw the isolines



Projection on first eigenvector

Projection on second eigenvector

$$1\text{st eigenvector } v^1: \quad \langle v^1, \phi(x) \rangle = \alpha_1^1 k(x^1, x) + \alpha_1^2 k(x^2, x) = \frac{1}{\sqrt{2}} k(x^1, x) + \frac{1}{\sqrt{2}} k(x^2, x)$$

$$2\text{nd eigenvector } v^2: \quad \langle v^2, \phi(x) \rangle = \alpha_2^1 k(x^1, x) + \alpha_2^2 k(x^2, x) = \frac{1}{\sqrt{2}} k(x^1, x) - \frac{1}{\sqrt{2}} k(x^2, x)$$

kPCA Exercise 1.2

Projection of query point x onto eigenvector v^i :

$$\langle v^i, \phi(x) \rangle = \frac{1}{\lambda_i M} \sum_{j=1}^M \alpha_j^i k(x^j, x)$$

homogeneous polynomial kernel with $p=1$ and $p=2$:

$$k(x, x') = \langle x, x' \rangle^p$$

Consider a 2 – dimensional data – space, with two datapoints:

Compute the eigenvectors and draw the isolines for the projections on each eigenvector.

kPCA Exercise 1.2: solution

$$K = \begin{bmatrix} k(x^1, x^1) & k(x^1, x^2) \\ k(x^2, x^1) & k(x^2, x^2) \end{bmatrix} \quad (\text{before centering})$$

$$\tilde{K}_{ij} = K_{ij} - \frac{1}{M} \sum_{k=1}^M K_{ik} - \frac{1}{M} \sum_{k=1}^M K_{kj} + \frac{1}{M^2} \sum_{k,l=1}^M K_{kl}$$

After centering $\tilde{K} = \begin{bmatrix} a & b \\ b & a \end{bmatrix}, \quad a = -b$

$$a = -\frac{1}{2}k(x^1, x^2) + \frac{1}{4}(k(x^1, x^1) + k(x^2, x^2)), \quad b = \frac{1}{2}k(x^1, x^2) - \frac{1}{4}(k(x^1, x^1) + k(x^2, x^2))$$

$$a = -\frac{1}{2}(\|x^1\| \|x^2\| \cos(\theta))^p + \frac{1}{4} \sum_{i=1}^2 \|x^i\|^p, \quad b = \frac{1}{2}(\|x^1\| \|x^2\| \cos(\theta))^p - \frac{1}{4} \sum_{i=1}^2 \|x^i\|^p$$

Dual eigenvectors are: $\alpha^1 = \frac{1}{\sqrt{2}}[-1 \ 1]^T \quad \alpha^2 = \frac{1}{\sqrt{2}}[1 \ 1]^T$

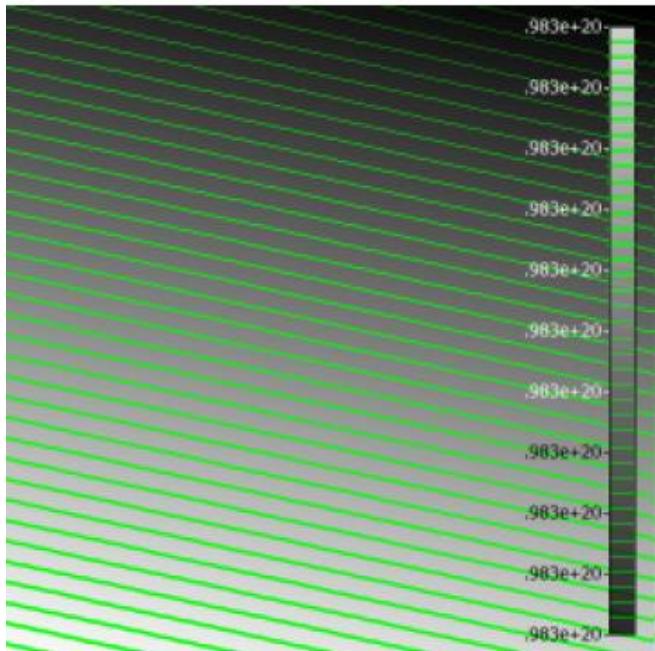
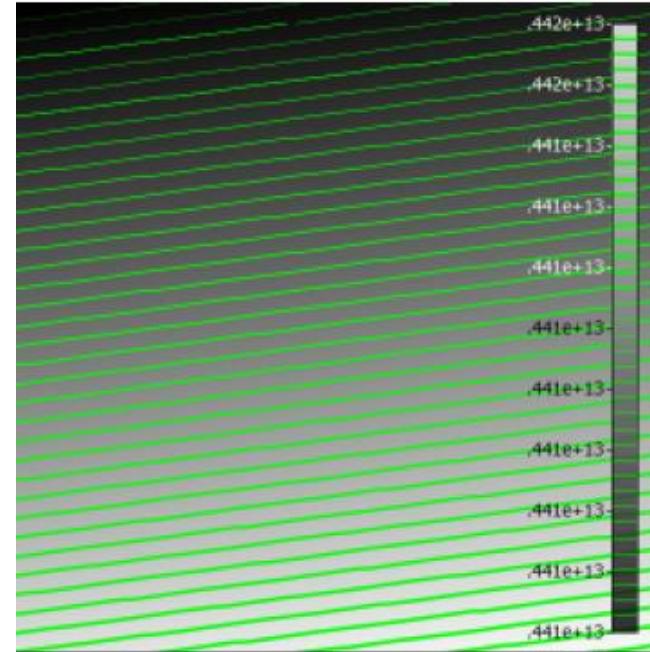
Projections on eigenvectors: $\langle v^1, \phi(x) \rangle = \frac{1}{\sqrt{2}}k(x^2, x) - \frac{1}{\sqrt{2}}k(x^1, x) \quad \langle v^2, \phi(x) \rangle = \frac{1}{\sqrt{2}}k(x^1, x) + \frac{1}{\sqrt{2}}k(x^2, x)$

$p = 1$, the isolines are lines perpendicular to the combination of vector points.

$p = 2, 4, 6$, etc generate ellipses and variants on these (see kernel lecture)

$p = 3, 5, 7$, etc generate hyperbolas and variants on these (see kernel lecture)

kPCA Exercise 1.2: solution



For the particular case where the two vector points are colinear or anticolinear, or when they are orthogonal, the solution is a set of lines orthogonal to the two vector points.

For orthogonal vectors, $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and the dual eigenvectors are $\alpha^1 = [0 \ 1]^T, \alpha^2 = [1 \ 0]^T$

$$\langle v^1, \phi(x) \rangle = k(x^1, x) = \left((x^1)^T x \right)^p \quad \text{and} \quad \langle v^2, \phi(x) \rangle = k(x^2, x) = \left((x^1)^T x \right)^p$$

kPCA Exercise 1.3

Projection of query point x onto eigenvector v^i :

$$\langle v^i, \phi(x) \rangle = \frac{1}{\lambda_i M} \sum_{j=1}^M \alpha_j^i k(x^j, x)$$

Consider a 2 – dimensional data – space, with 3 equidistant datapoints:

Compute the eigenvectors and draw the isolines for the projections on each eigenvector, when using:

- a) RBF kernel
- b) Homogeneous polynomial kernel

What happens if the points are not equidistant?

kPCA Exercise 1.3: solution

$$K = \begin{bmatrix} 1 & k(x^1, x^2) & k(x^1, x^3) \\ k(x^2, x^1) & 1 & k(x^2, x^3) \\ k(x^3, x^1) & k(x^3, x^2) & 1 \end{bmatrix}$$

Points equidistant: $k(x^1, x^2) = k(x^1, x^3) = k(x^2, x^3) = b$

$$K = \begin{bmatrix} 1 & b & b \\ b & 1 & b \\ b & b & 1 \end{bmatrix} \Rightarrow \tilde{K} = \frac{1}{3} \begin{bmatrix} 2-2b & b-1 & b-1 \\ b-1 & 2-2b & b-1 \\ b-1 & b-1 & 2-2b \end{bmatrix}$$

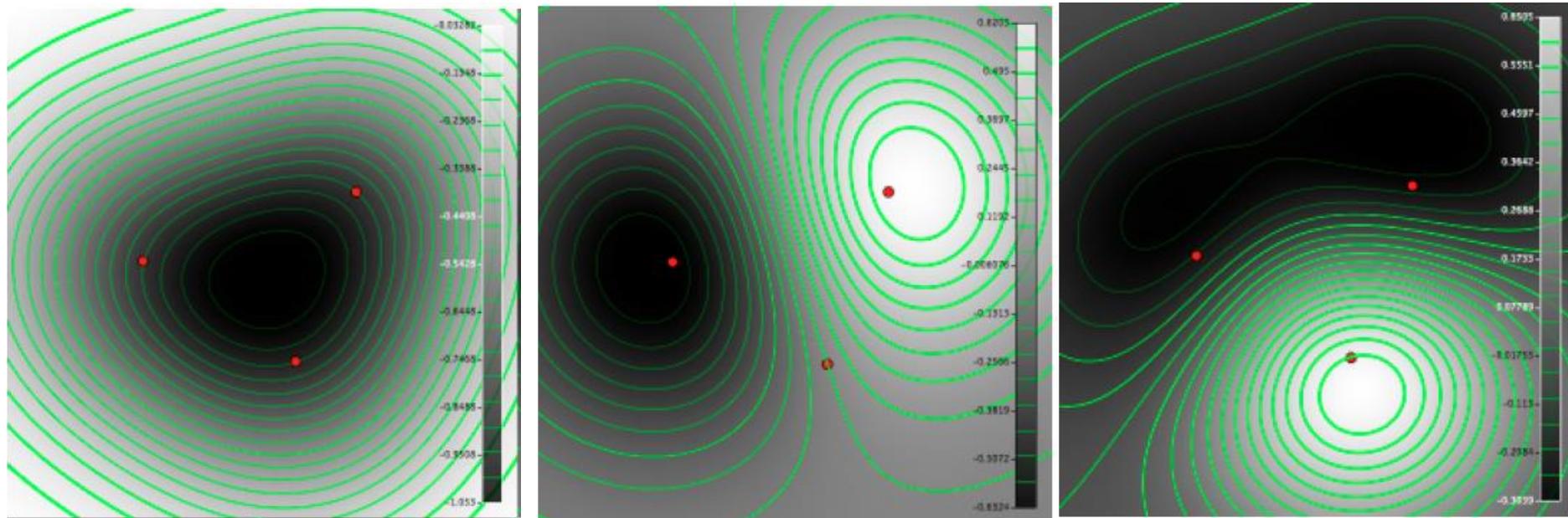
Dual eigenvectors $\alpha^1 = \frac{1}{\sqrt{3}}[1 \ 1 \ 1]^T$

$$\alpha^2 = \frac{1}{\sqrt{2}}[0 \ 1 \ -1]^T$$

$$\alpha^3 = \sqrt{\frac{2}{3}}[1 \ -1/2 \ -1/2]^T$$

kPCA Exercise 1.3: solution

Projections on dual eigenvectors with RBF

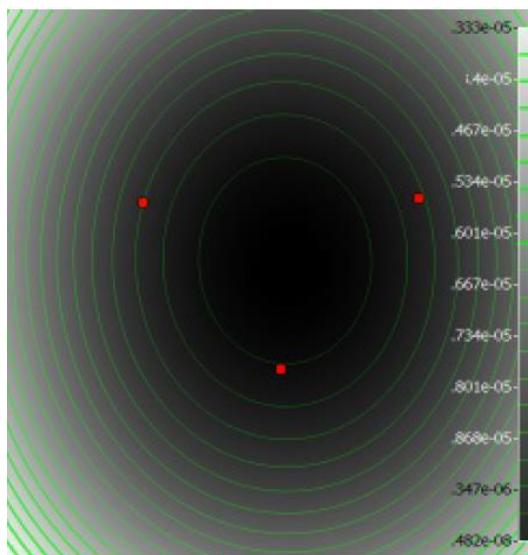
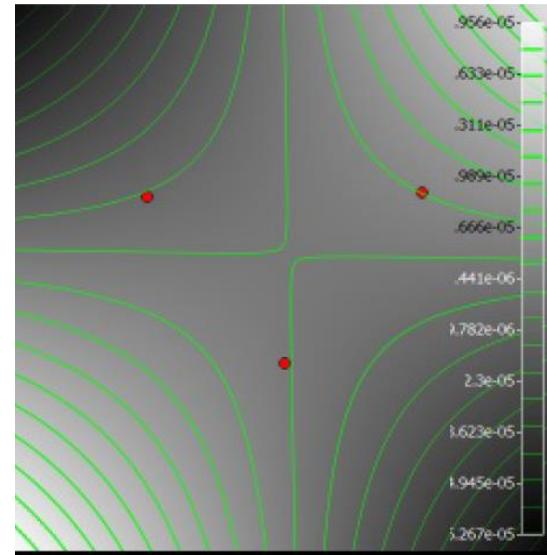
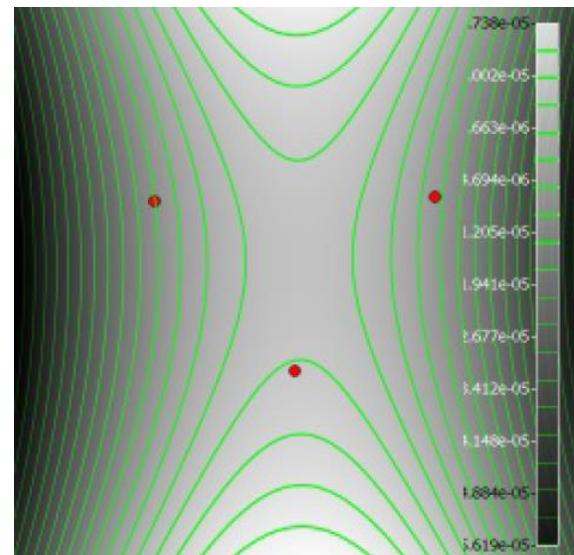


$$\alpha^1 = \frac{1}{\sqrt{3}}[1 \ 1 \ 1]^T$$

$$\alpha^2 = \frac{1}{\sqrt{2}}[0 \ 1 \ -1]^T \quad \alpha^3 = \sqrt{\frac{2}{3}}[1 \ -1/2 \ -1/2]^T$$

kPCA Exercise 1.3: solution

Projections on dual eigenvectors with polynomial of order 2

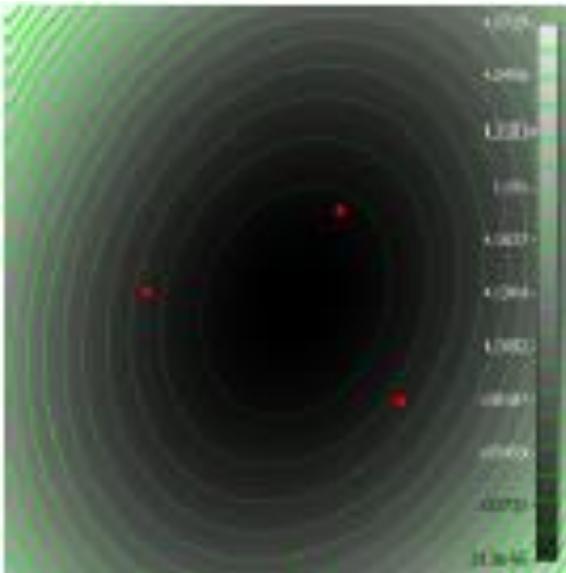
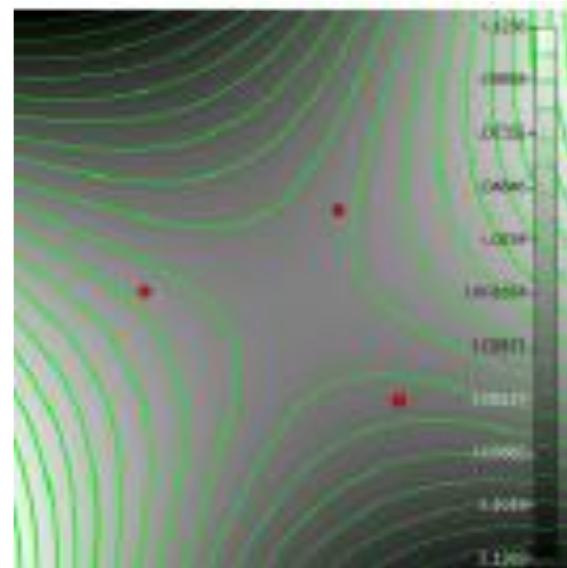
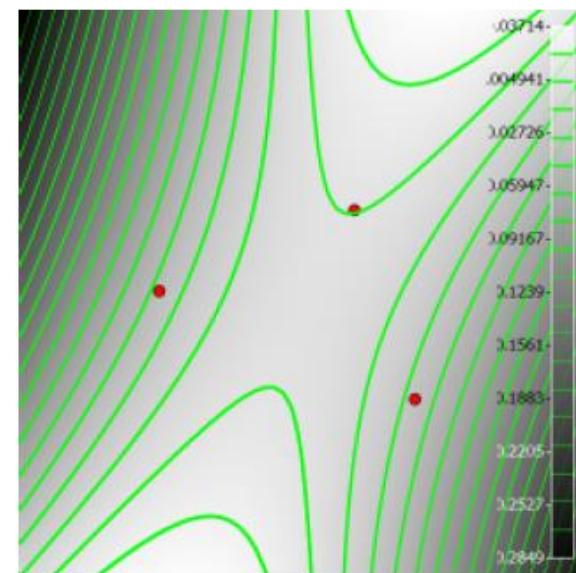


$$\alpha^1 = \frac{1}{\sqrt{3}}[1 \ 1 \ 1]^T$$

$$\alpha^2 = \frac{1}{\sqrt{2}}[0 \ 1 \ -1]^T \quad \alpha^3 = \sqrt{\frac{2}{3}}[1 \ -1/2 \ -1/2]^T$$

kPCA Exercise 1.3: solution

Projections on dual eigenvectors with polynomial of order 2



$$\alpha^1 = \frac{1}{\sqrt{3}}[1 \ 1 \ 1]^T$$

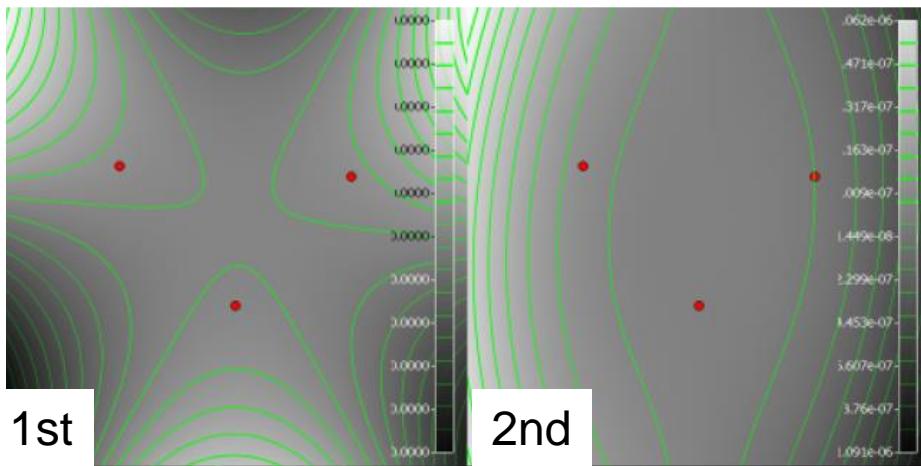
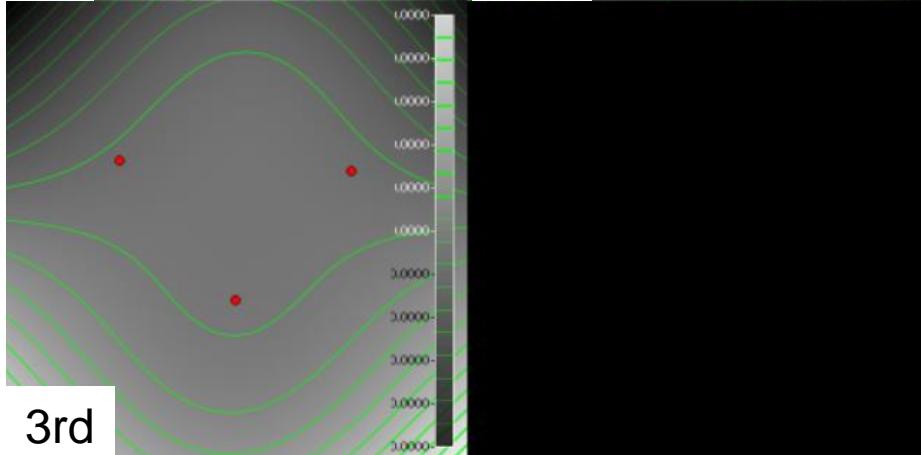
$$\alpha^2 = \frac{1}{\sqrt{2}}[0 \ 1 \ -1]^T$$

$$\alpha^3 = \sqrt{\frac{2}{3}}[1 \ -1/2 \ -1/2]^T$$

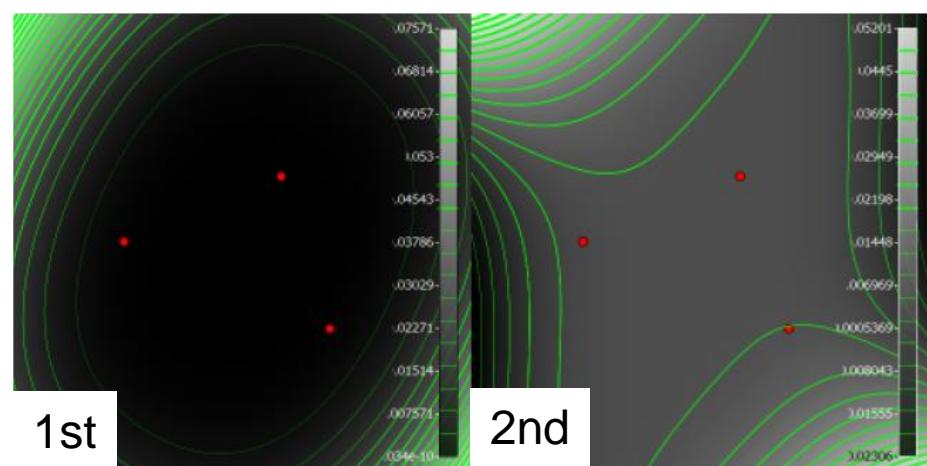
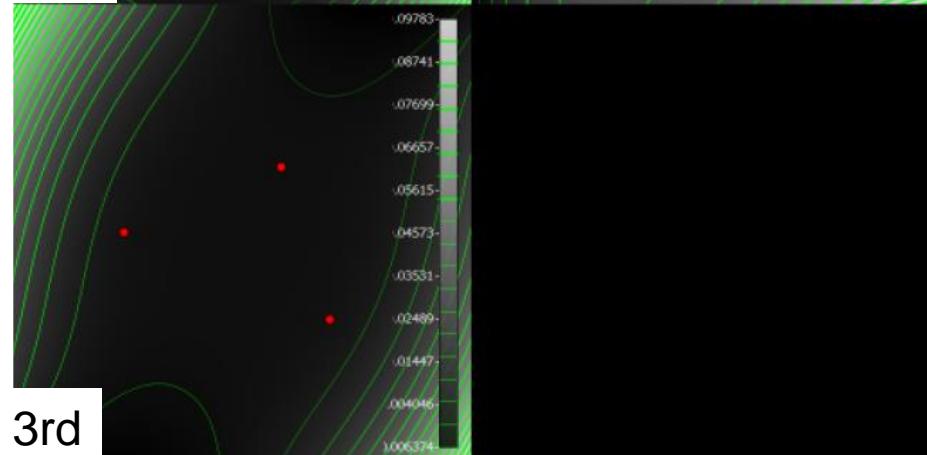
Observe how the ellipse and hyperbolas align with the points' spatial distribution.

kPCA Exercise 1.3: solution

Dual eigenvectors remain identical even when the kernel is of higher order

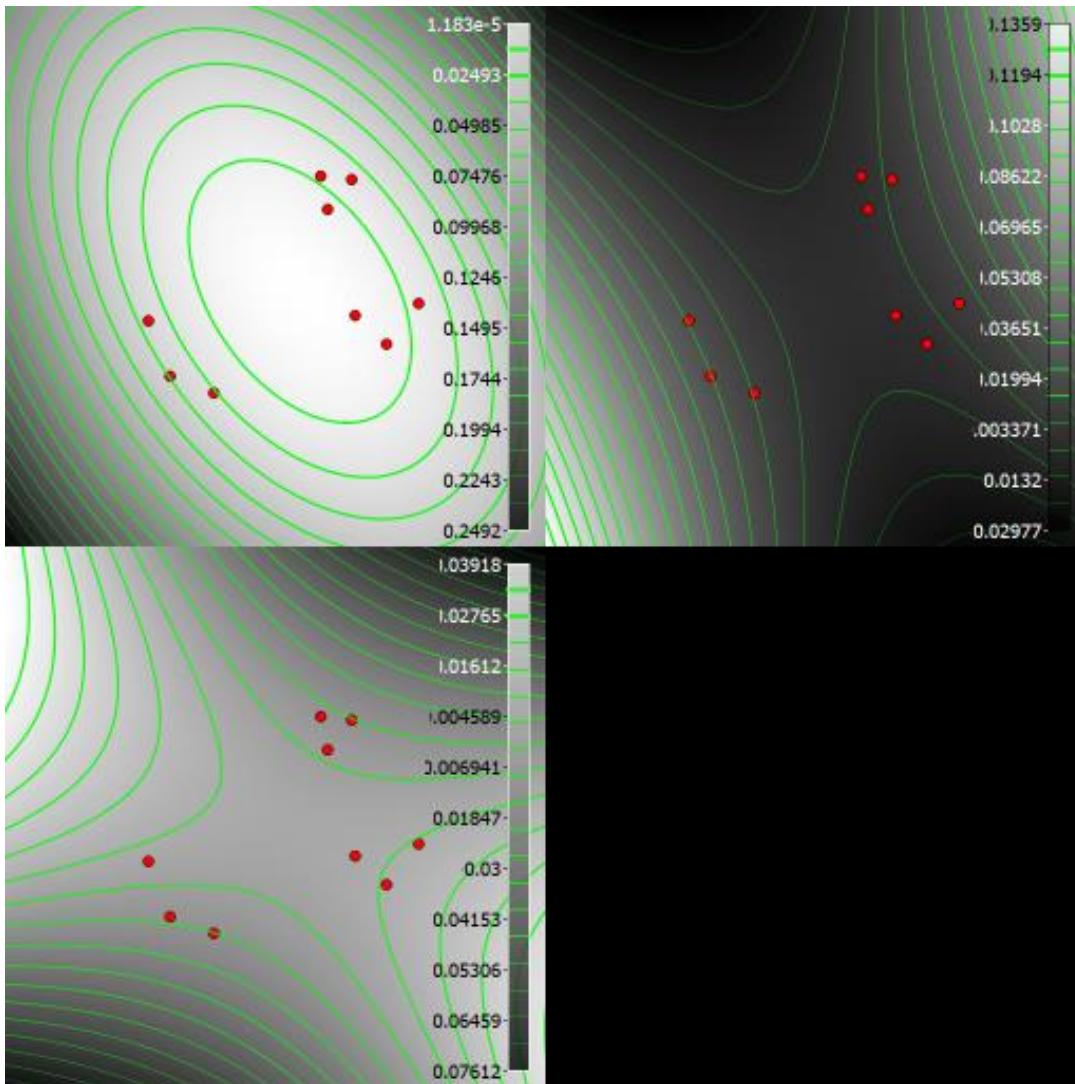


$P=3$



$P=4$

kPCA Exercise 1.3: solution



Adding more datapoints affects only the direction of the ellipse and hyperbolas but not the shape as the projections are solely a combination of the addition of several polynomial or RBF kernels.